The Boolean expression $( p \Rightarrow q ) \wedge( q \Rightarrow \sim p )$ is equivalent to :

  • [JEE MAIN 2021]
  • A

    $q$

  • B

    $\sim \mathrm{q}$

  • C

    $\mathrm{p}$

  • D

    $\sim \mathrm{p}$

Similar Questions

Let $p$ and $q$ be two Statements. Amongst the following, the Statement that is equivalent to $p \to q$ is

  • [AIEEE 2012]

Let $r \in\{p, q, \sim p, \sim q\}$ be such that the logical statement $r \vee(\sim p) \Rightarrow(p \wedge q) \vee r \quad$ is a tautology. Then ' $r$ ' is equal to

  • [JEE MAIN 2022]

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]

$\left( {p \wedge  \sim q \wedge  \sim r} \right) \vee \left( { \sim p \wedge q \wedge  \sim r} \right) \vee \left( { \sim p \wedge  \sim q \wedge r} \right)$ is equivalent to-

Which of the following is a tautology?

  • [JEE MAIN 2020]