The Boolean expression $( p \Rightarrow q ) \wedge( q \Rightarrow \sim p )$ is equivalent to :
$q$
$\sim \mathrm{q}$
$\mathrm{p}$
$\sim \mathrm{p}$
Let $p$ and $q$ be two Statements. Amongst the following, the Statement that is equivalent to $p \to q$ is
Let $r \in\{p, q, \sim p, \sim q\}$ be such that the logical statement $r \vee(\sim p) \Rightarrow(p \wedge q) \vee r \quad$ is a tautology. Then ' $r$ ' is equal to
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.
$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ is equivalent to-
Which of the following is a tautology?